
Correlation of Intrusion Symptoms : an
Application of Chronicles

Benjamin Morin and Hervé Debar

France Télécom R&D, Caen, France
{benjamin.morin|herve.debar}@rd.francetelecom.com

Abstract. In this paper, we propose a multi-alarm misuse correlation
component based on the chronicles formalism. Chronicles provide a high
level declarative language and a recognition system that is used in other
areas where dynamic systems are monitored. This formalism allows us
to reduce the number of alarms shipped to the operator and enhances
the quality of the diagnosis provided.

1 Introduction

The diagnosis provided by current intrusion detection systems is spread over
numerous fine-grained alarms. As a result, the overall number of alarms is over-
whelming. Moreover, their content is so poor that it requires the operator to go
back to the original data source to assess the actual severity of the alarms.

Being able to express phenomena involving several alarms1 is essential in
diagnosis applications because using several observations i) strengthens the di-
agnosis, ii) reduces the overall number of alarms and iii) improves the content
of the alarms. Strengthening the diagnosis enables to invalidate or confirm the
alarms, which is very important in intrusion detection where false positives are
prominent. The number of alarms is reduced because alarms (symptoms) are
presented to the operator as labeled groups instead of being presented individ-
ually. The content is enhanced because the information of the symptoms are
combined. Our approach implies a multi-event correlation component using as
input IDS alerts.

The correlation component we propose is a misuse based. The definition of
misuse correlation is similar to misuse intrusion detection : known malicious or
undesired sequences of events are searched in the data stream. In our approach,
the alarms are checked against a set of multi-events patterns (or signatures)
expressed in a dedicated language. Several approaches have been proposed in
the research field to provide signatures languages involving many events. In [2],
Eckmann et al classify languages in six categories : event languages, response
languages, reporting languages, correlation languages, exploit languages and de-
tection languages. We are interested here in correlation languages. Correlation

1 or events – in the remainder of this paper, we will either speak of events and alarms
because alarms triggered by IDSes are input events of the correlation system



languages rely on alarms provided by IDSes to recognize ongoing attack sce-
narios. Examples of existing correlation languages are Statl [2], P-Best [4] and
Lambda [24].

We propose to use the chronicle formalism proposed by Dousson [11] to corre-
late alarms. Chronicles are used in many distinct areas [14]. They were primarily
designed to analyze sequences of alarms issued by equipments in a telecommu-
nication network and a voltage distribution network. They are now also used in
some subtasks of a project aimed at representing car flows in road traffic. In the
medical domain, they are being looked at for hepatitis symptoms tracking, in-
telligent patient monitoring or cardiac arrhythmia detection. We propose to use
chronicles to correlate alarms issued by intrusion detection analyzers. Our corre-
lation component uses Dousson’s chronicle recognition system (CRS), available
at http://crs.elibel.tm.fr.

In this paper, we first introduce the chronicles formalism. We then show how
chronicles are applied to intrusion detection and illustrate how it solves some
intrusion detection issues. We also describe in what extent chronicles integrate
with an existing alarm correlation infrastructure. Before concluding and evoking
future works, we compare our research with related work.

2 Chronicles

Chronicles provide a framework for modeling dynamic systems. They include
an evolution monitoring mechanism to track changes in the modeled system.
Recognition of chronicles is based on a formalism in which time is fundamental.
This is in contrast with classical expert systems, which base their reasoning on
rules, relegating time information to the background.

Chronicles are temporal patterns that represent possible evolutions of the ob-
served system. A chronicle is a set of events, linked together by time constraints,
whose occurrence may depend on the context. The available time information
allows ordering and the specification of time spans between two occurrences of
events. In the AI literature, chronicles are related to other approaches such as
plan recognition and event calculus (see [12]).

In the remainder of this section, we present the essential features of the
chronicles, and briefly sketch the recognition process. Detailed description can
be found in [11, 13].

2.1 Representation

In the AI literature, a natural approach to the representation of temporal in-
formation consists in associating assertions with particular times. Chronicles
representation relies on the reified temporal logic formalism [5, 7, 16]. In this for-
malism, propositional terms are related to times or other propositional terms
through additional truth predicates, like hold. For example, in a reified logic,
one may use hold(is(light, on), T ) to represent the assertion “light is on over
time T”.



Time Representation For algorithm complexity reasons, time representation re-
lies on the time points algebra and time is considered as a linearly ordered
discrete set of instants whose resolution is sufficient for the environment dynam-
ics.

It should be noticed that in the chronicle formalism, if several identical events
occur at the same time point, only one is taken into account. As a consequence,
the time resolution is very important because in domains like intrusion detection,
many identical events may occur within a small time window.

A time interval I is expressed as pair I = (t1, t2) corresponding to the lower
and upper bound on the temporal distance between two time points t1 and t2.

Domain Attributes In the reified logic formalism, the environment is described
through domain attributes. Domain attributes are the atemporal propositions
of the modeled environment.

A domain attribute is a couple P (a1, . . . , an) : v, where P is the attribute
name, a1, . . . , an its arguments and v its value. For example, Load(host) can be
a measure of a server load, and the possible values {low,medium,high}. Special
attributes, called messages, are attributes without any associated value.

Reifying Predicates Reifying predicates are used to temporally qualify the set of
domain attributes. Their syntax and informal semantics are sketched in Figure 1.
The predicates used in chronicles are hold, event, noevent and occurs.

hold(P : v, (t1, t2)) The domain attribute P must keep the value v over the
interval [t1, t2[.

event(P : (v1, v2), t) The attribute P changed its value from v1 to v2 at t.

event(P, t) Message P occurs at t.

noevent(P, (t1, t2)) The chronicle would not be recognized if any change of
the value of the domain attribute P occurs between t1
and t2.

occurs((n1, n2), P, (t1, t2))
(0 6 n1 6 n2)

the event that matches the pattern P occurred exactly
N times between the two time points t1 and t2, and
n1 6 N 6 n2. The value ∞ can be used for n2.

occurs is unifying because

�
noevent(P, (t1, t2)) ≡ occurs((0, 0), P, (t1, t2))
event(P, t1) ≡ occurs((1,∞), P, (t1, t1 + 1))

Fig. 1. Reifying Predicates

– The hold predicate models chronicle assertions (assertions for short). Asser-
tions represent persistence of the value of a domain attribute over an interval,
without knowing when this value was reached.

– The event predicate expresses a time stamped instance of a pattern. An
event has no duration. Events denote a change of the value of a domain
attribute.



– The noevent predicate expresses forbidden events, i.e. events whose occur-
rence leads to the invalidation of a chronicle instance during the recognition
process.

– The occurs is a counting predicate.

Chronicle Model A chronicle model (or chronicle) represents a piece of evolution
of the world. Chronicles are made of i) a set of time points, ii) a set of temporal
constraints between the time points, iii) a set of event patterns which represent
relevant changes of the world for this chronicle, iv) a set of assertions patterns
which represent the context of the occurrences of events, and v) a set of external
actions which will be performed by the system when a chronicle is recognized.
Actions are not limited to report generation : the system can generate events
and assertions. Both of them can later interact with other chronicles instances.
Reinserting previously recognized chronicles in the flow of input events is referred
to as “looping” functionality in the remainder (see section 3.4).

Chronicle models are expressed in the chronicle language. After a compilation
stage during which the consistency of the chronicle constraints is tested, the
chronicles are coded into efficient data structures used for the recognition process
described thereafter.

2.2 Chronicle Recognition

After the chronicle models compilation, the recognition system is initialized by
creating an empty chronicle instance for each chronicle model. A chronicle in-
stance is a chronicle for which a complete match is not found yet. The chronicle
recognition system then processes the stream of input events in one shot and
on-line.

An event whose atemporal state unifies with a pattern of a chronicle is always
considered for integration in a chronicle ; the integration solely depends on the
suitability of the chronicle temporal constraints, the previously integrated events
and the event’s timestamp. Events may be shared by many chronicles and the
system is able to manage all the concurrent instances. The recognition process
manages a set of partial instances of chronicles as a set of time windows (one
for each forthcoming event) that is gradually constrained by each new matched
event.

An event occurrence may also lead chronicle instances to be destroyed be-
cause an expected event’s deadline is reached, and so all chronicles waiting for
any event before this deadline are destroyed. Outdated assertions can also be
suppressed after an event occurence.

If an assertion is violated or if a deadline expires, then a chronicle instance
is destroyed.

When integrating an event occurence in a chronicle instance, the system
cannot a priori be sure that the event will integrate well in the chronicle with
regard to the forthcoming events. It is not possible to integrate an event inside
a chronicle without maintaining the hypothesis that it is not necessarily this
chronicle instance that will be recognized. As a result, every chronicle instance



is duplicated before the integration of an event. The systems maintains parallel
hypothesis so that all event sequences satisfying the constraints are recognized.

1 chronicle example1 {

2 event(e1,t1);

3 event(e2,t2);

4 event(e3,t3);

5

6 t1<t2<t3

7 t3-t2 <= 4

8 }

Fig. 2. A Chronicle Example

(e1,2’) (e1,2’) (e1,2’) (e1,2’)(e1,2’) (e1,2’)

(e1,2’)

(e2,5’)

(e1,2’)

(e2,10’)

(e3,13’)

(e1,2’)

(e2,10’)

9’(e2,5’)(e1,2’) (e2,10’) (e3,13’) 15’

C1

C2

C4

C3

Fig. 3. Duplication example

We illustrate duplication of chronicles with the example in Figure 3. Let us
consider the following chronicle :

event(e1, t1) ∧ event(e2, t2) ∧ event(e3, t3) ∧ (t1 < t2 < t3) ∧ t3 − t2 6 4

which is equivalent to the one represented in the chronicle language in Figure 2.
The event stream is made of e1 at 2’, followed by e2 at 5’ followed by another

e2 at 10’ and a e3 at 13’. When e1 arrives, a chronicle instance (C1) of chronicle
model C is created. When e2 arrives, a duplicate of C1 is created (C2), and e2 is
integrated in C2. At 9’, C2 dies because the constraint te3 − te2 6 4 is not true
anymore. When the second e2 arrives, a duplicate of C1 (C3) is created. When e3

occurs , a duplicate of C3 (C4) is created and the chronicle is recognized (shaded
box on figure). At 15’, C3 dies.

This mechanism imposes the chronicle recognition system to be exhaustive,
i.e. all the possible instances of the defined chronicles are identified by the system.

For example, if we consider the chronicle

event(a, t1) ∧ event(b, t2) ∧ event(c, t3) ∧ t2 < t3



and the event stream 2,
a1, a2, b1, c1, a3

then the chronicle is recognized three times : {a1, b1, c1}, {a2, b1, c1}, {a3, b1, c1}.
Chronicles duplication imposes chronicle models to be written with care.

As a matter of fact, if no chronicle invalidation mechanism is specified in a
chronicle model, the chronicle instances tree may grow up indefinitely because of
chronicles living forever. Chronicles may be invalidated either with an assertion
violation or a deadline being reached. As a result, in order to prevent chronicle
instances to live forever, assertions (like hold or noevent) and/or quantitative
time constraints (like (t2 − t1) < 2) should be specified inside chronicle models.

When a complete match is found, a chronicle is recognized, and the associated
action is performed by the system.

3 Using Chronicles to Correlate Intrusion Alarms

The current three major issues in intrusion detection are alarm overload, poor-
ness of the alarms semantics and false negatives. In our approach, we explicitly
address the first two. The false negative issue is partly solved by making comple-
mentary sensors cooperate to provide an appropriate coverage of the monitoring
of the environment. Cooperation is a kind of correlation that involves fusion of
redundant alarms and synthesis of complementary alarms, and can be achieved
by chronicles because we are not restricted to using a single input stream. Co-
operation is indeed all the more essential as the multiplication of analyzers also
multiplies the alarms. However, contrary to Cuppens in [24] whose correlation
process infers unobserved alarms from attack scenarios, we solely rely on avail-
able alarms. We do not generate almost recognized3 chronicles because this would
imply that optional events are used inside chronicles models which could conse-
quently be removed.

In the remainder of this section, we first briefly discuss the informal semantics
of the chronicles used in intrusion detection. Then, we give examples to illustrate
how chronicles can be used to enhance the content of the alarm and reduce the
amount of alarms.

The domain attribute used in the following chronicle models is a
triplet alarm(name, src, trg) where name is the attack identifier (e.g
“cmd.exe access”), src is the attack source (e.g an IP address) and trg is
the attack target (e.g an IP address). In fact, the alarm term may denote real
attacks or benign events. Using the chronicle language, the alarm domain at-
tribute is declared as follows :

message alarm[?name,?src,?trg]
{
}

2 indices are only used to distinguish event instances and we do not provide timestamps
because we do not need them for the example

3 i.e chronicles whose expected event set is not complete



Constraints on the parameter values can be specified inside the brackets.
The ? is used to inform the system that attributes are variables that should be
instantiated by the chronicle recognition system when an event occurs.

3.1 Informal semantics of the chronicles applied to intrusion
detection

Chronicles model phenomena which involve more than one event. This definition
does not presume the semantic of a chronicle. Actually, in the intrusion detection
context, the modeled phenomena may either be normal or malicious. In this
section, we describe these two kinds of chronicles.

Normal phenomena False alarms (false positives) are the primary cause of
alarm overload. Although many false positives could be avoided by using more
sophisticated signatures and detection mechanisms, it should be noted that some
attacks can only be characterized by a single event. As a result, legitimate actions
can be confused with attacks.

To solve this, it is possible to discriminate legitimate actions from attacks
instead of discriminating attacks from legitimate actions. In this case, chronicles
represent normal phenomena which involve an alarm as well as other periph-
eral and innocuous events which are indicative of normal activity. Paragraph
3.2 illustrates this situation. The recognition of such a chronicle invalidates the
alarm ; a chronicle invalidation (i.e a chronicle which is not recognized) means
that the alarm is indicative of a real attack. In the former case, the alarm is not
directly shown to the security operator (it is included in a recognized chronicle) ;
in the latter case, the alarm is directly provided to the operator.

Notice that a chronicle instance can also be invalidated because only innocu-
ous events are observed, but no alarms. In this case, the innocuous events shall
not be shown to the operator. Examples of innocuous events are provided in
Section 3.2.

Malicious phenomena Some attacks are characterized by several suspicious
events. In this case, sensors trigger one alarm per event. Chronicles can be used
to model these phenomena. Such a chronicle recognition contributes to alarm
reduction because only one alarm (the recognized chronicle) is provided to the
operator instead of each individual alarm. It also contributes to the semantic
improvement because the recognized phenomena is more significant than each
individual alarm. If partial chronicle are invalidated, their constitutive alarms
are provided to the operator individually and may be used in other correlation
mechanisms.

Innocuous events used in this kind of chronicles shall not be provided to
the operator if the chronicle is invalidated. If a chronicle is recognized, then the
involved innocuous events are available to the operator for investigation.

In the intrusion detection literature, alarm correlation often refers to attack
scenarios. An attack scenario is a sequence of explicit attack steps which are



logically linked and lead to an objective. A portscan followed by a buffer overflow
against a given service is an example of attack scenario.

An attack scenario can be modeled by a chronicle. However, we do not in-
tend to use chronicles to model attack scenarios. There are two reasons for this.
Firstly, the relevance of an attack scenario is questionable because many (un-
predictable) paths may lead to a given attack objective. Secondly, it is hard to
specify quantitative time constraints in chronicles because the time gaps between
each step may vary a lot, depending on how hurried the attacker is. The attacker
may even work on time gaps to evade detection.

As a result, malicious phenomena modeled with chronicles are phenomena
whose occurrences are deterministic. Examples of such phenomena are given in
sections 3.4 and 3.3.

3.2 Alarm semantics improvement

1 chronicle shellcode_mitigation[?source, ?target]

2 {

3 event(alarm[ftp_retr_request,?source,?target], t1)

4 event(alarm[shellcode,?source,?target], t2)

5 noevent(alarm[ftp_transfer_complete,?target,?source],

6 (t1+1,t3-1))

7 event(alarm[ftp_transfer_complete,?target,?source], t3)

8

9 t1<t2<t3

10

11 when recognized {

12 emit event(alarm[shellcode_mitigation, ?source, ?target], t2);

13 }

14 }

Fig. 4. A Chronicle Example : Alarm Mitigation

Description of the Phenomenon False alarms are the main cause of alarm
overload ; Julisch reports that they represent up to 99% of the overall number
of alarms [19].

We believe that the diagnosis provided by intrusion detection systems can be
strengthened by taking into account contextual events to discriminate true from
false positives. Contextual events can be benign events whose occurrence can
reinforce or mitigate the confidence an operator has in an alarm. In that sense,
chronicles can both represent known false positive cases and true positives.

To illustrate this, we propose a chronicle which is used identify a recurrent
false positive triggered by a network IDS in our network, pretending that buffer



overflow attacks occur. The shellcodes used in some buffer overflow attacks con-
tain long 0x90 bytes strings. Many misuse network IDSes signatures are based
on this property to detect buffer overflow attacks in a generic way. However, this
kind of signature can provoke false positives because legitimate binary data go-
ing on the wire can match the signature. This is the case with ftp file transfers :
binary file transfers can trigger alarms because the probability for a binary file
to contain 0x90 bytes strings is potentially high4. Deactivating the signature is
not a solution because true attacks against ftp servers would not be detected
anymore.

One solution can consist in mitigating the alarm severity when it is triggered
during a file transfer, i.e between a request from a client and the end of the file
transfer. This implies that sensors generate events for each file retrieval request
and the corresponding acknowledgement message. As a result, every file transfer
provokes two innocuous events. Notice that the frequency of file transfer requests
is moderate with regard to the events throughput managed by chronicles, so these
innocuous events do not burden the recognition process. However, a security
operator should keep this consideration in mind when writing chronicles.

Description of the Chronicle The corresponding chronicle is in Figure 4.
The goal of this chronicle is to generate a report informing the operator that a
buffer overflow alarm was raised, but it occurred during a file transfer, so it is
probably a false alarm. As a result, any buffer overflow alarm that is not inside
a chronicle is really suspect.

In this chronicle, ftp_retr_request and ftp_transfer_complete are the
innocuous events which respectively indicate a FTP file transfer request made
by the client and the end of file transfer. The shellcode alarm is the actual
buffer overflow attempt. A sensor is required to trigger the first two events.
Snort can be used for that purpose, with the adequate signatures to monitor
control commands of the FTP protocol.

The order in which the reifying predicates are specified does not matter
because the system relies on the temporal constraints.

The temporal symbols t1,t2 and t3 are variables which are instantiated by
the system. Note that contrary to the domain attributes parameters, temporal
symbols do not need to be prefixed by a “?”, since temporal symbols only de-
note variables (absolute dates cannot be used as time symbols). The chronicle
recognition system instantiates t1 (resp. t2 and t3) with the ftp_retr_request
(resp. shellcode and ftp_transfer_complete) event timestamp.

The use of identical variable names as parameters of the domain attributes
implicitly imposes the source and target involved in the chronicle to be identical.

The noevent predicate in line 5 is necessary to prevent chronicles to live
forever in the system (see section 2.2). No quantitative temporal constraint is
specified in this chronicle (we do not know how long a file transfer may last)
and since the CRS recognition is exhaustive, the ftp_transfer_complete event
could be used as the end of an earlier chronicle instance being recognized ; as a
4 http://www.whitehats.com/info/IDS181



result, we need to add a constraint saying that ftp_transfer_complete alarms
should not occur twice within a chronicle.

When faced with a “normal” ftp transaction, (i.e. a ftp_retr_request fol-
lowed by a ftp_transfer_complete event), the chronicle recognition system
discards a chronicle instance when receiving the ftp_transfer_complete event,
because the chronicle constraints (t2<t3) cannot be satisfied anymore.

3.3 Alarm reduction

1 chronicle portscan[?source, ?target]

2 {

3 event(alarm[sid_1,?source,?target], t1)

4 occurs((1,+oo),alarm[sid_2,?source,?target], (t1+1,t2))

5 noevent(alarm[sid_3,?source,?target], (t1,t2))

6 event(alarm[sid_3,?source,?target], t2+1)

7 t1<t2

8

9 when recognized {

10 emit event(alarm[portscan, ?source, ?target], t2);

11 }

12 }

Fig. 5. A Chronicle Example : portscan detected by Snort

Description of the Phenomenon Intrusion detection systems tend to spread
their diagnosis over many alarms, mainly because the analysis is performed on
single events ; as a result, alarms are too fine-grained : a single phenomenon
involving many events –be it benign or not– provokes many alarms. Let us take
the example of portscan detection by Snort to illustrate this.

When detecting portscans, Snort generates three kinds of alarms : a
portscan_begin alarm, several portscan_status during the scan, and finally
a portscan_end when the portscan is supposedly finished.

Description of the Chronicle A simple yet effective chronicle model to syn-
thesize portscan alarms is provided in Figure 5. The sid_1, sid_2 and sid_3
alarms respectively correspond to the portscan_begin, portscan_status and
portscan_end alarms. These alarms should have the same source and the same
target. The first event (line 1) initiates the chronicle and instantiates t1; t2 is
instantiated by the last event (line 6) ; between t1 and t2+1, an infinite number
of portscan_status alarms may occur.



Portscans are recurrent phenomena. For the same reason as the previous
chronicle example, we need to add a constraint saying that portscan end alarms
should not occur twice within a chronicle.

3.4 Alarm semantics improvement and alarm reduction

1 chronicle nimda[?source, ?target]

2 {

3 occurs((1,2),alarm[iis_code_red_ii_root_exe,?source,?target],

4 (t,t+2000))

5 occurs((1,4),alarm[iis_decode_bug,?source,?target],(t,t+2000))

6 occurs((1,14),alarm[iis_cmd_exe,?source,?target],(t, t+2000))

7 occurs((1,3),alarm[web_dot_dot,?source,?target],(t,t+2000))

8 occurs((1,2),alarm[iis_unicode,?source,?target],(t,t+2000))

9 occurs((1,1),alarm[iis_unicode2,?source,?target],(t,t+2000))

10 occurs((1,1),alarm[iis_unicode3,?source,?target],(t,t+2000))

11 occurs((1,1),alarm[iis_decode_bug3,?source,?target],(t,t+2000))

12 occurs((1,1),alarm[iis_decode_bug2,?source,?target],(t,t+2000))

13 occurs((1,1),alarm[iis_decode_bug4,?source,?target],(t,t+2000))

14

15 when recognized {

16 emit event(alarm[nimda, ?source, ?target], t);

17 }

18 }

Fig. 6. A Chronicle Example : a Nimda worm attempt detected by Dragon

Description of the Phenomenon Recognizing known phenomena in which
many events are involved both enables reduction of the number of alarms (we
only have to consider the alarm set) and semantic enhancement (the identified
phenomenon). More and more attacks are automated processes, making it pos-
sible to write interesting chronicles because the intrusion steps are always the
same.

Example of such phenomena are worms. Worms attacks involve many events,
each of which can trigger one or more alarm. As worms are recurrent attacks,
reducing the number of alarms for each attempt has a strong impact on the
overall alarm excess.

The Nimda worm attacks vulnerable IIS web servers. During each infection
attempt, many suspect or malicious HTTP requests are sent to the target. Thus,
each Nimda attempt triggers many alarms by conventional IDSes : Snort5 gen-
erates about 20 alarms ; Dragon6 generates about 30 alarms.
5 http://www.snort.org
6 http://dragon.enterasys.com



Description of the Chronicle In Figure 6 we show a chronicle suited for
Dragon alarms. A Nimda attempt is characterized by a burst of 10 distinct
alarms. Each alarm can occur several times (for instance, the iis_cmd_exe
occurs 1 to 14 times at each attempt). All the alarms should have the same
source and the same target, and they all occur within a 2s time window (the
resolution here is 1 ms). When such an alarm burst occurs, a synthetic alarm
nimda_worm_attempt is reported. Only one synthetic alarm represents the 30
original ones.

1 chronicle new_infection[?victim, ?attacker]

2 {

3 event(infected[?victim, somebody]:(true, false), t0)

4 noevent(infected[?victim, ?]:(false, true), (t0,t1))

5

6 event(alarm[nimda, ?attacker, ?victim], t1)

7 event(alarm[nimda, ?victim, ?], t2)

8

9 t2 - t1 in [1000,10000]

10 when recognized {

11 emit event(infected[?victim, ?attacker]:(false,true), t1)

12 }

13 }

Fig. 7. Identifying new Nimda infections

We provide an complementary chronicle example called new_infection in
Figure 7. This example illustrate two important things : the chronicles looping
functionality and the use of domain attributes which are not alarms. The goal
of this chronicle is to recognize every new server infection by the Nimda worm.
The first parameter of the new_infection chronicle is the newly infected server
and the second parameter is the host causing the infection.

We can say that a host b is infected by a if a Nimda attempt from a to b is
detected (line 6), followed by Nimda attempts from b to any host (line 7) 1 to
10 seconds later (line 8).

The problem is that a host still receives attack attempts although it is already
infected. As a result, if we only use the previous two patterns to detect newly
infected hosts, the chronicle would be recognized every time b is attacked. We
want the chronicle to be recognized only once, so we need to tag infected hosts :
b is newly infected only if it was not infected before the attack from a.

We use a infected(?victim, ?attacker) ∈ {true, false} domain attribute. Note
that infected is not an alarm. It is rather a topology-like relation. Note also that
contrary to alarms which are messages, infected is a valued domain attribute.



Line 3 of the chronicle is the initialization of the state of the hosts : the
chronicle recognition system should receive events saying that by default, no
host is infected (“victim is infected by somebody” is false).

Line 4 should be read as “[For the chronicle to be recognized], victim must
not have been previously infected by any host”. When used solely, the “?” symbol
represents a variable whose value should not be instantiated (any).

Line 6 and 7 are the manifestations of a successful infection.
When the chronicle is recognized, the status of victim is updated
(infected[?victim,?attacker] becomes true when the attempt occurs – see
line 11).

3.5 Sensor cooperation

Description of the Phenomenon The chronicle language is a high level
declarative language. It does not presume the nature of the underlying input
event stream. As a result, cooperation (i.e. correlation of alarms from heteroge-
nous sources) is naturally modeled with chronicles. Of course, the input format
must be compliant with the one expected by the chronicle recognition system
(the domain attributes properties –arity, parameters domain values– have to be
defined).

The upstream sensors that generate alarms must have their clocks synchro-
nized, and the gap between two clocks should be coherent with the time resolu-
tion used in the chronicle models. If these conditions hold, then chronicles are
able to manage delays due to sensors processing or transport durations. Whether
an event is delayed or not, its integration in a chronicle is done in the same way
because the chronicle temporal reasoning is solely performed over the events
timestamp, not on the running clock.

1 chronicle successful_codeExec[?source, ?target]

2 {

3 event(alarm[?bufov_snort_alarm, ?source, ?target], t1);

4 event(alarm[shell_exec, ?, ?target], t2);

5 noevent(alarm[login, ?, ?target], (t1,t2));

6 ?bufov_snort_alarm in {sid_203, sid_34}

7

8 t2 - t1 in [0,100]

9

10 when recognized {

11 emit event(alarm[successful_buffer_overflow, ?source, ?target],

12 t2);

13 }

14 }

Fig. 8. A Chronicle example : example of IDS cooperation



Description of the Chronicle In the example provided in Figure 8, three
sensors are used : Snort, Snare and Syslog. The Snort sensor sends the alarm
?bufov_snort_alarm, shell_exec is triggered by a system-based monitoring
tool (Snare) and the login alarm is sent by Syslog. The chronicle monitors
successful attacks resulting in the execution of a shell on a host.

In line 3, we wait for any alarm about a buffer overflow attack. In line 6,
the Snort alarm names (sid_xxx) that refer to buffer overflow attacks are enu-
merated. If such an attack is followed by a shell execution on the same target,
and no login execution occurred between the two (which could justify the shell
execution), then the chronicle is recognized.

3.6 Experimental Results

The chronicle models proposed in this paper have not been tested on a live system
yet. We plan to do this in the near future. They have only been validated on
alarm logs collected in our network.

However, concerning the ability of the chronicle recognition system to cope
with intrusion alarm flow, one should notice that chronicles were primarily de-
signed to diagnose failures in telecommunication network by analyzing alarms
issued by equipments. In this context, the recognition system must be efficient
because it has to deal with alarm bursts and high alarm rates.

The alarm rates observed in the intrusion detection field are of the same order
as the ones observed in other fields where the chronicles have already successfully
been applied.

The performance issue may arise if no chronicle invalidation mechanism is
specified by the chronicle writer in a chronicle model. In this case, the chronicle
instances tree may grow up indefinitely because of chronicles living forever (see
section 2.2).

Performance also depends on the number of chronicle models used in parallel.
The time required to process an event grows linearly with the number of chronicle
models. In [11], efficiency experiments are performed with 80 chronicle models,
containing about 10 event patterns among 50 domain attributes, 20 temporal
constraints and 4 assertions. In this configuration, the integration of an event
required about 10 ms. Detailed efficiency arguments about chronicles can be
found in [11] (pages 78–81).

4 M2D2 : An Intrusion Alarm Correlation Infrastructure

Except the chronicle model proposed in Figure 7, alarm(name, src, trg) is the
only domain attribute used in the chronicle models discussed in the previous
section.

In [1], we argue that current alarm correlation approaches do not take advan-
tage of all the available information, especially environmental information. For
example, false alarms are often abusively attributed to poor intrusion detection



systems techniques : in many cases, false alarms are caused by the environment
properties not being taken into account.

To address this, we proposed a formal data model called M2D2. M2D2 fed-
erates the information that is required for alarm correlation. In this section,
we sketch how the chronicle recognition system can cooperate with the M2D2
framework.

4.1 Overview of M2D2

M2D2 can be seen as an infrastructure upon which alarm correlation systems can
rely for events and structural information. M2D2 provides concepts and relations
modeled with standard propositions of the classical first-order logic.

The concepts of M2D2 can be categorized in four groups : i) characteristics
of the information system, ii) vulnerabilities, iii) security tools and iv) events.

Characteristics of the information system include information about the car-
tography7 and the security policy. Vulnerabilities include information about the
characteristics of known vulnerabilities : prerequisites, effect, products affected.
Security tools include information about the nature and the configuration of the
tools used to monitor entities of the information system for signs of attacks.
Events include basic events (signs of the attacks) and alarms provided by IDSes,
but also by the correlation systems.

A more detailed description of M2D2 can be found in [1].

4.2 M2D2 and the Chronicles

There is a two-way relationship between M2D2 and the chronicles : as a corre-
lation system, the chronicles take advantage of the data provided by M2D2 and
also act as an alarm provider for M2D2.

M2D2 data are modeled with first-order logic predicates, so they can be used
as the atemporal information of the reified logic on which the chronicles are
based. In other words, the M2D2’s concepts are used as domain attributes of
the chronicles. In our current approach, only M2D2’s alarm concepts are used
as domain attributes of chronicles (see section 3). However, the other available
concepts would enhance the chronicle models.

The infected domain attribute in the example 3.4 is an example of the use
of a domain attribute corresponding to M2D2’s cartography class of information.
We illustrate the use of topological information with another example : video
conferences require the firewall to be open. Every participant is notified of the
port number he/she shall use, and connections bursts on the server are observed.
Thus, over these periods, portscans shall be described as false positives. By
tracking the topological modification (the firewall opening), a chronicle could
qualify the portscans as false positives during video-conference sessions.

7 cartography both refers to the topology of the network and the softwares running
on the hosts



In M2D2, the high level alarms triggered by correlation systems are related
to lower level alarms with the part of relation. Thus, alarms are structured in a
hierarchy, where leaf nodes are the lowest level alarms provided by basic IDSes
and root nodes are the highest level alarms, built with intermediate events.
Only the hierarchies root alarms are directly shown to the operator. If detailed
information about the alarms is required, the operator can browse the alarm
hierarchy. There is a straightforward mapping between the IDWG [15] alarm
structures and the event concept of M2D2.

Using previously recognized chronicles into other chronicle models is a func-
tionality already included in the chronicle recognition system (see the looping
functionality in section 2.1). By making M2D2 and the chronicle recognition sys-
tem cooperate, the recognized chronicles are transformed into M2D2 high level
alarms linked with the events with the part of relation. The new alarms provided
by the chronicle recognition system are de facto made available to other corre-
lation systems relying on M2D2. This is illustrated in Figure 9. There are two
alarm generators, a Snort sensor and CRS. When a nimda attack occurs, Snort
generates the three iis-decode-bug, iis-cmd-exe and iis-unicode alarms.
These alarms are made available to CRS, which recognizes a nimda attack. A
nimda alarm is triggered, and related to the previous alarms with the part of re-
lationship. Only the nimda alarm is provided to the operator. On the contrary,
the shellcode alarm is not related to any recognized chronicle so it is directly
provided to the operator. The nimda alarm could be involved in another alarm
via the part of relation. For instance, we can use the vulnerabilities information
contained in M2D2 to check whether the target server is really vulnerable or not
(see [1]).

iis_decode_bug

Snort

CRS

iis_cmd_exe ... iis_unicode3

nimda

part_of

part_of

part_of

Operator

shellcode

triggered_by
triggered_bytriggered_by

triggered_by

triggered_by

Fig. 9. Relations between alarms

The architecture of the global system is summarized in Figure 10. On this
figure, we see that alarms provided by sensors (S1 and S2) are sent to a dis-
patcher. The dispatcher assigns unique identifiers to events and dispatches them



to the M2D2 database and to the correlation systems performing asynchronous
(i.e. event-driven) analysis. Chronicle recognition is one of these asynchronous
processes. Other environmental information contained in M2D2 are exploited as
domain attributes of the chronicles.

M2D2

S1

S2

CRS

Alarms (recognized chronicles)

Alarms

Alarms

Dispatcher
Alarms

Alarms

Attributes
Domain

Chronicle
Models

Fig. 10. Interactions between the chronicles and M2D2

5 Related Work

Among the six categories of languages proposed by Eckmann et al [2], two are
of relevance here : detection languages and correlation languages. Our approach
aims at correlating alarms, so we shall first compare to other correlation lan-
guages.

Cuppens [23] proposes a language, called Lambda, whose scenarios steps
represent the attacker’s action (be they observable or not). However, we believe
that attackers strategies are too random to be the subject of explicit attack
scenarios. In [24], Cuppens also proposes more flexible approaches to correlate
alarms through the underlying attacks consequences and prerequisites.

Although chronicles could be used for this purpose, we do not dedicate chron-
icles to attack scenario modeling. In our approach, chronicles are used to rep-
resent known phenomena which involve several alarms and to strengthen and
enhance single alarms by combining them with other events, as well as other
information not found in the alarms.

The Statl [2] correlation language is a transition-based language, which is
strongly dedicated to the underlying search algorithm, whereas the chronicles
language is a high level declarative language. This language enabled to success-
fully apply chronicles to many distinct fields. Our intrusion alarm correlation
component benefits from the operational and stable chronicle recognition sys-
tem developed by Dousson for these application fields.



Another essential difference with the two previous works is that time is fun-
damental in chronicles, whereas the reasoning of Lambda and Statl is not based
on time.

Although we are interested in correlating alarms, we shall compare our work
with existing detection languages. Detection languages analyze raw events, some
of which are manifestations of an attack. This is the fundamental difference
between correlation and detection languages : in detection, the goal is to identify
the events in the monitored stream that are suspects, among all the legitimate
ones. In correlation, all events are potentially suspects.

However, from the point of view of the operators used in such languages, the
distinction between detection and correlation languages is rather small. Thus,
operators used in high-level declarative detection languages like Sutekh from
Pouzol [21], LogWeaver from Goubault-Larrecq [3] are closer from our work
than previously cited correlation languages. These languages could most likely
be transposed to correlation languages (i.e take alerts as input instead of raw
events).

Pouzol and Goubault-Larreq use non-reified temporal approaches; they take
as input a trail, i.e a totally ordered set of events. From the point of view of
expressiveness, since reified logics accord a special status to time and allow one
to predicate and quantify over propositional terms, they are more expressive
for classifying different types of temporal occurrence and in representing both
non-temporal and temporal aspects of causal relationships.

As much as we know, Pouzol does not provide the counting predicate, but the
chronicles would benefit of his work concerning the problem of the recognition
being exhaustive, evoked in section 2.2 [22].

We way also compare our work with an existing alarm correlation system,
called Risk Manager [8]. Risk Manager uses time information to aggregate alarms
but is not based on a temporal reasoning. Moreover, it does not provide any mean
to express explicit alarm sequences.

6 Conclusion and future work

In this paper, we proposed to apply chronicles to alarm correlation in intrusion
detection. Chronicles benefit of strong theoretical background. They provide a
high level declarative language which does not presume the nature of the under-
lying input events. An operational and stable implementation of the recognition
system exists. Chronicles are indeed being successfully used in many distinct
areas to monitor dynamic systems where the time information is relevant.

We have illustrated how chronicles might solve some of current intrusion
detection issues like alarm overload, false positives and poor alarm semantics.

The proposed chronicles currently only use alarms as domain attributes. We
plan to integrate the chronicle recognition system with an alarm correlation
infrastructure, M2D2, in order to extend domain attributes to other relevant
concepts, like topology, which is more and more dynamic.



Chronicle models are currently written by experts of the domain. A chronicle
learning tool called Face is currently being developed by Dousson to discover
frequent chronicles. In intrusion detection, many alarm groups are caused by
recurrent phenomena, especially worms. We plan to apply the chronicle learning
tool to discover such phenomena.

7 Acknowledgments

We are very greatful to Christophe Dousson for his help to use the Chronicle
Recognition System. We would also want to thank Ludovic Mé and Mireille
Ducassé for their comments.

References

1. B. Morin, L. Mé, H. Debar and M. Ducassé, “M2D2 : a formal data model for
intrusion alarm correlation”, Proceedings of the 5th Recent Advances in Intrusion
Detection 2002 (RAID2002), 2002.

2. S.T. Eckmann, G. Vigna, R.A. Kemmerer, “STATL : An Attack Language for
State-based Intrusion Detection”, Dept. of Computer Science, University of Cali-
fornia, Santa Barbara, 2000.

3. M. Roger, J. Goubault-Larrecq, “Log Auditing Through Model-Checking”, Pro-
ceedings of the 14th IEEE Computer Security Foundations Workshop (CSFW01),
2001.

4. U. Lindqvist, P.A. Porras, “Detecting Computer and Network Misuse Through
the Production-Based Expert System Toolset (P-BEST)”, Proceedings of the IEEE
Symposium on Security and Privacy, 1999.

5. D.V. McDermott, “A Temporal Logic for Reasoning about Processes and Plans”,
Cognitive Science, pp.101–155, 1982.

6. F. Bacchus, J. Tenenberg, J.A. Koomen, “A non-reified Temporal Logic”, Artificial
Intelligence, pp.87–108, 1991.

7. J. Allen, “Towards a General Theory of Action and Time”, Artificial Intelligence,
pp.123–154, 1984.

8. H. Debar, A. Wespi, “Aggregation and Correlation of Intrusion Detection Alerts”,
Proceedings of the 4th Recent Advances in Intrusion Detection (RAID2001), Octo-
ber 2000.

9. S. Manganaris, M. Christensen, D. Zerkle, K. Hermiz, “A Data Mining Analysis of
RTID Alarms”, Computer Networks: The International Journal of Computer and
Telecommunications Networking, Volume 34, Issue 34, October 2000.

10. C. Dousson, P. Gaborit, and M. Ghallab, “Situation Recognition : Representation
and Algorithms”, in proceedings of the 13th IJCAI, pp.166–172, August 1993.

11. C. Dousson, “Suivi d’évolutions et reconnaissance de chroniques”, PhD Thesis,
http://dli.rd.francetelecom.fr/abc/diagnostic/, 1994.

12. C. Dousson, “Alarm Driven Supervision for Telecommunication Networks : Online
Chronicle Recognition”, Annales des Telecommunications, pp.501–508, 1996.

13. C. Dousson, “Extending and Unifying Chronicles Representation with Event Coun-
ters”, in proceedings of the 15th European Conference on Artificial Intelligence
(ECAI 2002), August 2002.



14. M. O. Cordier, C. Dousson, “Alarm Driven Monitoring Based on Chronicles”, in
proceedings of the 4th Symposium on Fault Detection Supervision and Safety for
Technical Processes (Safeprocess 2000), pp. 286–291, June 2000.

15. H. Debar, M.Y. Huang, D.J. Donahoo, “Intrusion Detection Exchange Format
Data Model”, IETF Draft, 2002.

16. Y. Shoham, “Temporal Logics in AI : Semantical and Ontological Considerations”,
Journal of Artificial Intelligence, pp.89–104, 1987.

17. R. Dechter, I. Meiri, J. Pearl, “Temporal Constraint Networks”, Artificial Intelli-
gence, pp.61–95, 1991.

18. G. Jakobson and M. D. Weissman, “Alarm correlation”, IEEE Network Magazine,
pp. 52–60, 1993.

19. K. Julisch, “Mining Alarm Clusters to Improve Alarm Handling Efficiency”, Pro-
ceedings of the 17th ACSAC, December 2001.

20. S. Manganaris, et al, “A Data Mining Analysis of RTID Alarms”, First Inter-
national Workshop on the Recent Advances in Intrusion Detection (RAID98),
September 1998.

21. J.P. Pouzol, M. Ducassé, “From Declarative Signatures to Misuse IDS”, Proceedings
of the 4th Recent Advances in Intrusion Detection (RAID), 2001.

22. J.P. Pouzol, M. Ducassé, “Formal Specification of Intrusion Signatures and Detec-
tion Rules”, Proceedings of the 15th IEEE Computer Security Foundations Work-
shop (CSFW), 2002.

23. F. Cuppens, “Managing Alerts in Multi-Intrusion Detection Environment”, Pro-
ceedings of the 17th Annual Computer Security Applications Conference (ACSAC
01), 2001.

24. F. Cuppens, A. Miege, “Alert Correlation in a Cooperative Intrusion Detection
Framework”, Proceedings of the IEEE Symposium on Security and Privacy”, 2002.


